【摘要】Extracting the amplitude and time information from the shaped pulse is an important step in nuclear physics experiments. For this purpose, a neural network can be an alternative in off-line data processing. For processing the data in real time and reducing the off-line data storage required in a trigger event, we designed a customized neural network accelerator on a field programmable gate array platform to implement specific layers in a convolutional neural network. The latter is then used in the front-end electronics of the detector. With fully reconfigurable hardware, a tested neural network structure was used for accurate timing of shaped pulses common in front-end electronics. This design can handle up to four channels of pulse signals at once. The peak performance of each channel is 1.665 Giga operations per second at a working frequency of 25 MHz.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《铁道运营技术》 2015-06-25
《重庆高教研究》 2015-06-30
《重庆高教研究》 2015-06-30
《重庆高教研究》 2015-06-26
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点