中教数据库 > Nuclear Science and Techniques > 文章详情

FPGA implementation of neural network accelerator for pulse information extraction in high energy physics

更新时间:2023-05-28

【摘要】Extracting the amplitude and time information from the shaped pulse is an important step in nuclear physics experiments. For this purpose, a neural network can be an alternative in off-line data processing. For processing the data in real time and reducing the off-line data storage required in a trigger event, we designed a customized neural network accelerator on a field programmable gate array platform to implement specific layers in a convolutional neural network. The latter is then used in the front-end electronics of the detector. With fully reconfigurable hardware, a tested neural network structure was used for accurate timing of shaped pulses common in front-end electronics. This design can handle up to four channels of pulse signals at once. The peak performance of each channel is 1.665 Giga operations per second at a working frequency of 25 MHz.

【关键词】

426 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号